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Rigorous proofs of the equivalence of the kinematic and energy definitions of the group velocity of the 

fundamental modes of propagating homogeneous waves in a Lagrangian continuum system of general 

form are given. Plane, cylindrical and spherical waves in an unbounded medium are considered, 

together with waves in waveguides, and plane and cylindrical waves in layers. The applicability of the 

results obtained to problems in the theory of elasticity is indicated. Formulae are given for the energies 

of elastic waves. 

EXISTING general proofs of the identity of the kinematic and energy definitions, based on 
variational approaches for Lagrangian continuum systems [l-5], are not mathematically 
impeccable and usually refer only to plane waves. 

1. STATEMENT OF THE PROBLEM 

Consider a continuum system of general form in three-dimensional Euclidean space. Let the 
state of the system be described by a Lagrangian density L, which does not depend explicitly 
on the coordinates x,, x,, _x~ and time t, and is a homogeneous quadratic form of the 
characteristic parameter-functions ui = ui(xI, x,, x,, t) = ui(xj, t) and their first derivatives 
y,, = aui tat, uii = aui /a~,. We thus have 

From 

Here 
used 

L= L(ui,rYUi+j,Ui) (1.1) 

Hamilton’s principle for this system we obtain the Euler-Lagrange equations 

Li*e,+LQvj-Li=O$ i=1,2 ,..., n (1.2) 

and henceforth repeated subscripts imply summation and the following notation is 

41.1 = aLi, 1 at, LQ.j = anti I ax, 

Lit = ar, / au,,, , LG =ilLl&i,j, Li =aL/3ui 

Multiplying (1.2) by ui, and performing standard transformations, we obtain the equation of 
continuity for the energy E 
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aE/at+v~J=O (1.3) 

E = Ui.,I-i, - L, Jj = Ui,,Lii 0.4 

where J is the specific energy flux vector 
of energy transport. 

The physical meaning of the vector J 
volume V (Poynting’s theorem) 

(the Poynting vector) defining the rate and direction 

follows from the integral form of Eq. (1.3) over the 

a I, z~Edu+ jn.Jds=O 
V av 

(1.5) 

where n is the unit outward normal to the boundary W of the volume. 
We shall assume that the Lagrangian system under consideration is in a free steady oscil- 

latory mode with frequency o. Then u,, L, all their partial derivatives, and consequently, also 
E and J, will be periodic in t with period T = 2x/o. Hence averaging (1.5) over the period, we 
obtain the equality 

In.(J)& = 0 
tW 

(...)=(...), =+a,..&% T=S U-6) 

expressing the energy balance in the volume V for periodic processes. 
Below we shall only consider homogeneous normal propagating waves (HWs), which satisfy 

the homogeneous equations of motion (1.2), and for media with boundaries, the homogeneous 
boundary conditions also. The set of these conditions generates a dispersion relation 

D(C.O,CXj;=O (1.7) 

connecting the frequency o (o > 0) and the wave numbers aj. For an HW Imaj = 0 for all j. 
The set of all real solutions oli to Eq. (1.7) for given w will be called the polar set. 
The group velocity vector c, 

cti = aw I aa j = - Dwaj I Dwa (l-8) 

is a kinematic characteristic of the HW and is assumed to be non-zero. 
The main problem is to establish, by a rigorous proof, that for the fundamental types of HW 

the group velocity is the energy transport velocity, i.e. 

c* = c, (1.9) 

where, depending on the form of HW 

ce = ( J >I( E > (1.10) 

or 

c, =j(J)dslj(E)ds, ScaV 
S S 

(1.11) 

if S has a unique normal at every point. 
From (1.3)-(1.6) c, is the rate of the mean energy transport across unit surface area with 

normal n in case (1.10) or across the surface S in case (1.11). 



General theorems on energy transport by homogeneous waves 863 

2. PLANE HWS IN AN UNBOUNDED MEDIUM 

We shall assume that the plane HW of the form 

Ui =f;(rl). rl=Wt-UjXj (2.1) 

satisfies the equations of motion (1.2), and the functions j are periodic in t with period T. 

Lemma 2.1. The plane HW (2.1) satisfies the condition 6(L) = 0 for all variations 6~ which 
preserve the dependence on q and possess periodicity with the same period as the wave itself. 

Proof. We have 

The first term on the right-hand side of (2.2) vanishes because of the equations of motion (1.2), and the 
second because of the period&y of Q(q) in,r with period T. Finally, the final integral is in fact equal to 
zero for the same reason as the second, because the derivative with respect to xi can be expressed in 
terms of the derivative with respect to t 

(2.3) 

(the prime denotes the derivative with respect to r\). 

We emphasize that the conditions of Lemma 2.1 do not require the waves ui +6ui to be 
solutions of Eqs (1.2). 

Lemma 2.2. For any plane HW (2.1) (L)= 0. 

Proof. Following [S] we replace ui by (l+~)u,, O< ~41. In this case the variation 6u, =EU( will satisfy 

the conditions of Lemma 2.1, and hence 6(L) = 0. But because L is a homogeneous quadratic function of 
its arguments, 0 = 6(L) = e*(L), and so (L) = 0. 

To formulate the following lemma we represent the Lagrangian L in the form 

L = L(w*aj*fi(N) (2.4) 

separating the explicit dependence of L on w and aj from the dependence of L on w and a, 
through IJ 

Lemma 2.3. If w and aj are respectively the frequency and wave numbers of the HW (2.1), 
then for any n and Pi 

Since L is a homogeneous quadratic form in A(@ and J’(q), and (fi7(@f~3(q)), = 
(f7(&fi7(Q>, Lemma 2.3 is obvious. 

Theorem 2.1. Formulae (1.8)-(1.10) hold for the plane HW (2.1). 

Proof. Throughout the proof the equals sign denotes the equality of terms to first order of 
smallness inclusive. 

Consider a plane HW, similar to the HW (2.1), of the form 
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is periodic with the same periodicity as f;(@. 
wave numbers aj +&x, of HW (2.5) related by the dispersion 

equation (1.7), and consequently 

for which the variation Si(q) 
The frequency o+ 60 and 

60/6crj=C, (2.6) 

Note that the HW (2.5) already has a changed period, equal to T +ST = 2x/R; R = o + 60. 
Apart from linear terms we can write 

@X~+gll)=sfi(rl)=~6,f;((rl) 

which enables the variation 6ui from (2.5) to be represented in the form 

SUi = S,fi + Sq f; (2.8) 

(6,J is the variation caused only by varying 11, while S,L is the variation in J when q is not 
affected). According to (2.7) 6,. can to a first approximation be taken to be a function having 
both periods T and T + ST. 

From Lemma 2.2 we have 

On the other hand 

(L(Ui +SUi)), =O (2.9) 

(L(uj +%))n =(L(ui))n +(6L)n (2.10) 

Using the obvious formulae 

Ui.r = ofi: Ui,j = -Ujfi' (2.11) 

and representation (1.1) for L, the last term in (2.10) can be transformed as fOllOwS: 

(&),=(GL(~:-ajfi:X))n=I,+I, +I11 

Here 

(2.12) 

(2.13) 

Note that for quantities of the first order of smallness 

(...)a = (...)” (2.14) 

From (2.14) and Lemma 2.1 I, = 0, since only the variation S,j;. participates in I,, preserving 
the dependence on 11. 

Further, in the notation of (2.4) 

‘q =(U@-aj9h(tl+6rl)), -(UW,aj,f;(q))n 

and using Lemma 2.3 
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Using the values of Z, and Z,, obtained, from (2.9), (2.10) and (2.12) we have 

After multiplying 
finally obtain 

IoK1 = 0 (2.15) 

(2.15) by o and using (2.11), (2.13), (2.14) and Lemma 2.2 ((L)=O), we 

which by (2.6) also proves Theorem 2.1. 

This proof of Theorem 2.1 is closest in form to that given in [5]. However, Lemmas 2.1 and 2.2 were 
formulated in [5] for integrals over rectangular volumes of (L) with edge lengths equal to an integer 
number of wavelengths, and Theorem 2.1 was only proved for variations in w and ai that preserved the 
period T. 

3. CYLINDRICAL HWS IN AN UNBOUNDED MEDIUM 

Consider a Lagrangian system with no dependence on the variable x,. A cylindrical HW 
satisfying the requirement that energy transport through a surface of radius r = (xf +x22)“* 
remains finite as r + =, has the form 

Ui=jfi(~.a,,WY, q=w-a,x, 
r (3.1) 

where I- is the connected part of the polar set, and the subscript m takes the values 1 and 2. 
We shall assume that in a polar system of coordinates 

Xl =rcos0, x2 = rsintl (3.2) 

for the HW (3.1) the asymptotic representations 

Ic; =r -)4 fiaha,,q). 7)=0t--r(a~,cos0+a~,sin0) (3.3) 

hold for large r, where the A, are also periodic in t with period T, and the amr are defined by 
the system of equations 

D(o,a,)= 0, cse = -c,,sin0+c,,cosf3=0 (3.4) 

In terms of the stationary-phase method [6], in the case of an oscillating integral (3.1) a,, 
and az are non-degenerate stationary points of the first order. 

In (3.3) a,, and a, are functions of 8. However, apart from terms of order r-l’* 

(3.5) 

The identity of the structures of formulae (3.5) and (2.11) means that all the results of Sec. 2 
hold for the cylindrical HWs (3.3) in the far field. Here aj and f; must be replaced by a,, and 
rel’*AO. 

Note that in a polar system of coordinates (3.2) the components of the Poynting vector 

J,=J1cos0+J2sin8, J,=-J,sin8+J,cos8 
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are given, according to (1.9) (1.10) and (3.4), by the relations 

(Jr) = c,,(E), (Je) = 0 
(3.6) 

f&r = C@ case + C@ sin 6) 

4. SPHERICAL HWS IN AN UNBOUNDED MEDIUM 

Spherical I-IWs in a three-dimensional Lagrangian system are given in terms of plane HWs 
by the formula 

(4-l) 

and unlike (3.1) r is now the connected component of the polar set in the three-dimensional 
space a,, a,, a,. 

Suppose that in a spherical system of coordinates 

x1 = R~os~s~~, x, =Rsin~sin~, x3 = Rcoscp 

the spherical HW (4.1) has, for large R, a principal asymptotic term of the form 

q = R-‘~=(w,a~,~) 

q = WC -R(a,,cos0sin(0+a~,sin9sincp+a,,coscp) 

with the values of a, given by the system of equations 

D(o,aj)=O, cse =0 

cglp =c,rcost3eoscp+c11sin0cos(p-ccgjsin(p=O 

(4.2) 

(4.3) 

As before, for an oscillating integral (4.1) system (4.3) defines non-degenerate stationary 
points by the stationary phase method. 

Instead of (3.5) we now have, up to terms in X-l 

Ui.j = -aiCR-‘f,:, 

and it is obvious that Theorem 2.1 has been extended to the far field R92 and to spherical 
HWs (4.2). 

For the far-field components of the vector J in a spherical system of coordinates, we have 
from (1.9), (1.10) and (4.2) 

(JJ=c&), (&)=O, (Jo)=0 

&R =c,,sincpcosQ+c,,sincpsin9+c8jcosV)) 

5. HWS IN WAVEGUIDES 

Suppose that a waveguide is extended without limit along the X, axis and has a constant 
cross-section S. We will assume that an HW of the form 

Ui =f;,(wYor,x,,$,q), q=or--a,x, (5.1) 
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satisfies the equations of motion (1.2) and homogeneous boundary conditions on the wave- 
guide boundary AS = &S,, v as,, 

ui =o, xEasu (5.2) 

% Lim =o, XEas, (5.3) 

where the subscript m takes the values 2 and 3. 
For the HW (5.1) with the notation 

(Ij = j(...)ds (5.4) 
s 

we have the following lemmas and theorem. 

Lemma 5.1. The HW (5.1) satisfies the condition 6(z)= 0 for all variations 6~ preserving 
the dependence on 11, periodic in I with period T and satisfying the main boundary condition 
(5.2) 8~~ = 0 OfI a&. 

Lemma 5.2. For any I-IW (5.1) (L) = 0. 

Lemma 5.3. If o and a, are, respectively, the eigenfrequency and wave number of the HW 
(5.1), then for any R and p1 

Theorem 5.1. Formulae (I.@-(1.11) with i= 1 hold for the HW (5.1). 
Lemmas 5.1-5.3 and Theorem 5.1 are proved by methods similar to th_ose used for the 

corresponding lemmas and theorem in Sec. 2. We need only replace L by L as in (5.4) and 
make small changes having to do with integration over S and the different form of the HW. 
Thh, when proving Lemma 5.1, it is sufficient to take into account that formulae (2.3) for 
(a, j) only hold for i = 1, while for i = 2, 3 we have 

which vanishes because of boundary conditions (5.2) and (5.3). In the proof of Theorem 5.1 it 
is necessary to include all the variations of A, w and a which do not affect q in the variation 
S,f;. from (2.8). Finally, in formulae (2.9)-(2.16) one must place a bar over all quantities assoc- 
iated with L, put i = 1, and separately write out the derivatives with respect to u~,~ and u~,~. 

Theorem 5.2. Theorem 5.1 also holds for systems in which the Lagrangian L satisfies all the 
conditions given in Sec. 1, but can also explicitly depend on x2 and x,, i.e. 

Note that in the proofs of Lemmas 2.1-2.3 and Theorem 2.1 the independence of the 
Lagrangian (1.1) from x1, x, and .x3 was only necessary for formulae (2.3). However, these 
formulae are just for i = 2 and i = 3 and they are not required for the proof of Lemma 5.1. 

Remark. In two-dimensional problems where there is no dependence on x3, all the assertions remain 
true if S is taken to be the thickness of the waveguide. The results also hold for surface waves in the half- 
plane x2 P 0, only now S= [0, -). 



A. V. NASEDKIN 

6. PLANE HWS IN A LAYER 

Suppose that in a layer extended without limit along x1 and x, and of thickness S in X, there 
is a plane HW of the form 

Ui =~(w,a,,a2,x3,rl). ~=w-alxl --2x2 (6.1) 

which satisfies the equations of motion (1.2) and the homogeneous boundary conditions (5.2) 
and (5.3) on the boundary as, where m = 3. 

The integrals (5.4) are now one-dimensional. In this notation for the plane HW (6.1) there 
are analogues with Lemmas 5.1-5.3 and Theorems 5.1 and 5.2, in which j = 1, 2; m= 3; here L 
can depend explicitly on x,. The changes in the proofs are obvious. We merely remark that in 
the formulation of Lemma 5.3 for the HW (6.1) the following quantity should appear 

(Z(o,a,,a,.~f;:in,PI.P2,x,,5))>o. 5=Q-P,x, -P2x2 

which vanishes for all R, PI and b,. Thus, for plane HWs (6.1) in a layer 

ci =(T)/(E), j= 1,2 

7. CYLINDRICAL HWS IN A LAYER 

A cylindrical HW can be represented in terms of plane HWs in a layer by integrals of the 
form 

Ui = jfi(o,a,,x3,q)dyky, q = ot -a,x, (7.1) 
I- 

where the subscript m takes the values 1 and 2. 
We will assume that in a cylindrical system of coordinates r, 8, xj, where r and 8 are defined 

by (3.2), for large r the HW (7.1) has an asymptotic representation of type (3.3), where J, also 
depends on x,. 

Repeating the arguments in Sec. 3, taking into account the changes associated with integ- 
ration across the thickness of the layer, we have for the far field r+l that 

This result, like the remark in Sec. 5, holds both for channel waves in a layer, and for surface 
waves in a half-space, where L can also depend explicitly on 5. 

8. ELASTIC HWS 

The Lagrangian L and energy E for an anisotropic elastic medium have the form 

L=T-W, E=T+W (8.1) 

T=X&rr W= )&,&j~k/r E~ = yZ(S,j + uj,i) (8.2) 

For constant density p and elastic moduli cijU the Lagrangian L satisfies the requirements of 
Sec. 1. Thus, for homogeneous anisotropic elastic media all the results of Sets 2-7 hold. For 
waveguides and layers, inhomogeneity of the medium over the cross-section is also allowed. 
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As has been proved before, for all the wave modes considered either (L)= 0 or (E)= 0. 
Hence, using (8.1), for waves in an unbounded medium and for waves in a waveguide or layer 
we have, correspondingly 

(T) =(W), (T)=(W), (E) = 2(T), (F) = 2(T) (8.3) 

For harmonic HWs 

I Reuicosn-ImVisinIl 

Ui = Reuisinr\+ImVicosTl’ 
f)=wf-aoLcxc 

where k= 1; k= 1, 2 or k= 1, 2, 3, and the amplitude functions ui can depend on o, a, and 
those spatial variables which do not occur in 11, formulae (8.3) with (8.2) taken into account, 
can be given a form convenient for calculations (the asterisks denote complex conjugation) 

(E)=)(;02pUiU:, (8)=Ho’lpUiUfdS 
s 

Note that all the results obtained are of a local nature, and hence the requirements of an 
unbounded medium or an infinitely extended waveguide or layer are not stringent. It is only 
required that the remaining conditions be satisfied in the regions of the medium under 
investigation. For example, formulae (3.6) and (4.4) are also, respectively, valid for the far 
fields of cylindrical waves inside a half-plane and spherical waves inside a half-space, etc. 
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